An Inequality for the Matrix Pressure Function and Applications
نویسنده
چکیده
We prove an a priori lower bound for the pressure, or p-norm joint spectral radius, of a measure on the set of d × d real matrices which parallels a result of J. Bochi for the joint spectral radius. We apply this lower bound to give new proofs of the continuity of the affinity dimension of a selfaffine set and of the continuity of the singular-value pressure for invertible matrices, both of which had been previously established by D.-J. Feng and P. Shmerkin using multiplicative ergodic theory and the subadditive variational principle. Unlike the previous proof, our lower bound yields algorithms to rigorously compute the pressure, singular value pressure and affinity dimension of a finite set of matrices to within an a priori prescribed accuracy in finitely many computational steps. We additionally deduce a related inequality for the singular value pressure for measures on the set of 2 × 2 real matrices, give a precise characterisation of the discontinuities of the singular value pressure function for two-dimensional matrices, and prove a general theorem relating the zero-temperature limit of the matrix pressure to the joint spectral radius.
منابع مشابه
The Structure of Bhattacharyya Matrix in Natural Exponential Family and Its Role in Approximating the Variance of a Statistics
In most situations the best estimator of a function of the parameter exists, but sometimes it has a complex form and we cannot compute its variance explicitly. Therefore, a lower bound for the variance of an estimator is one of the fundamentals in the estimation theory, because it gives us an idea about the accuracy of an estimator. It is well-known in statistical inference that the Cram&eac...
متن کاملOn generalized Hermite-Hadamard inequality for generalized convex function
In this paper, a new inequality for generalized convex functions which is related to the left side of generalized Hermite-Hadamard type inequality is obtained. Some applications for some generalized special means are also given.
متن کاملOn a New Reverse Hilbert\'s Type Inequality
In this paper, by using the Euler-Maclaurin expansion for the Riemann-$zeta$ function, we establish an inequality of a weight coefficient. Using this inequality, we derive a new reverse Hilbert's type inequality. As an applications, an equivalent form is obtained.
متن کاملA more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function
By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...
متن کاملAn inequality related to $eta$-convex functions (II)
Using the notion of eta-convex functions as generalization of convex functions, we estimate the difference between the middle and right terms in Hermite-Hadamard-Fejer inequality for differentiable mappings. Also as an application we give an error estimate for midpoint formula.
متن کاملExtension of Hardy Inequality on Weighted Sequence Spaces
Let and be a sequence with non-negative entries. If , denote by the infimum of those satisfying the following inequality: whenever . The purpose of this paper is to give an upper bound for the norm of operator T on weighted sequence spaces d(w,p) and lp(w) and also e(w,?). We considered this problem for certain matrix operators such as Norlund, Weighted mean, Ceasaro and Copson ma...
متن کامل